Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion.
نویسندگان
چکیده
Selenocysteine is encoded by a UGA codon in all organisms that synthesise selenoproteins. This codon is specified as a selenocysteine codon by an mRNA secondary structure, which is located immediately 3' of the UGA in the reading frame of selenoprotein genes in Gram-negative bacteria, whereas it is located in the 3' untranslated region of eukaryal selenoprotein genes. The location and the structure of a similar mRNA signal in archaea has so far not been determined. Seven selenoproteins were identified for the archaeon Methanococcus jannaschii by labelling with 75Se and by SDS/polyacrylamide electrophoresis. Their size could be correlated with open reading frames possessing internal UGA codons from the total genomic sequence. One of the open reading frames, that of the VhuD subunit of a hydrogenase, possesses two UGA codons and appears to code for a selenoprotein with two selenocysteine residues. A strongly conserved mRNA element was identified that is exclusively linked to selenoprotein genes. It is located in the 3' untranslated region in six of the mRNAs and in the 5' untranslated region of the fdhA mRNA. This element, which is present in the 3' non-translated region of two selenoprotein mRNAs from Methanococcus voltae, is proposed to act in decoding of the UGA with selenocysteine.
منابع مشابه
Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.
In 1970, a kinase activity that phosphorylated a minor species of seryl-tRNA to form phosphoseryl-tRNA was found in rooster liver [Maenpaa, P. H. & Bernfield, M. R. (1970) Proc. Natl. Acad. Sci. USA 67, 688-695], and a minor seryl-tRNA that decoded the nonsense UGA was detected in bovine liver. The phosphoseryl-tRNA and the minor UGA-decoding seryl-tRNA were subsequently identified as selenocys...
متن کاملMaking Sense out of Nonsense: Mechanistic Insight into Selenoprotein Syntiiesis Factors a Dissertation Submitted to the Graduate Dmsion of the Unnersity
Selenium is an essential micronutrient linked to various aspects of health. Selenium exerts its biological activity through incorporation of the amino acid, selenocysteine (Sec), into a unique class of proteins termed selenoproteins. Sec incorporation occurs cotranslationaIly at UGA codons in archaea, prokaryotes, and eukaryotes. UGA codons specify Sec coding rather than termination by the pres...
متن کاملAnalysis of eukaryotic mRNA structures directing cotranslational incorporation of selenocysteine.
Translation of an mRNA encoding a selenoprotein requires that at least one UGA codon in the reading frame is recoded as a site for the insertion of selenocysteine. In eukaryotes, the termination codon recoding event is directed by a cis-acting signal element located in the 3' untranslated region of the gene. This 'selenocysteine insertion sequence' (SECIS) comprises conserved sequences in a reg...
متن کاملMammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element.
Selenocysteine (Sec), the 21st amino acid in protein, is encoded by UGA. The Sec insertion sequence (SECIS) element, which is the stem-loop structure present in 3' untranslated regions (UTRs) of eukaryotic selenoprotein-encoding genes, is essential for recognition of UGA as a codon for Sec rather than as a stop signal. We now report the identification of a new eukaryotic selenoprotein, designat...
متن کاملA single homozygous point mutation in a 3'untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy.
Mutations in the SEPN1 gene encoding the selenoprotein N (SelN) have been described in different congenital myopathies. Here, we report the first mutation in the selenocysteine insertion sequence (SECIS) of SelN messenger RNA, a hairpin structure located in the 3' untranslated region, in a patient presenting a classical although mild form of rigid spine muscular dystrophy. We detected a signifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 266 4 شماره
صفحات -
تاریخ انتشار 1997